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Direct  numerical  simulations  of  a  temporally  developing,  droplet  laden  mixing  layer  undergoing  transition 
to  mixing  turbulence  are  conducted.  The  formulation  includes  complete  two-way  couplings of mass, 
momentum  and  energy.  As  many as 18 x lo6 grid  points  are  used to discretize  the  Eulerian  gas  phase 
equations  and  up  to 5.7 x lo6 initially  polydisperse  evaporating  droplets  are  tracked  in  the  Lagrangian 
reference  frame.  The  complete  transition  to  mixing  turbulence  is  captured  for  several  of  the  higher 
Reynolds  number  simulations  and  it  is  observed  that  increasing  the  droplet  mass  loading  ratio  results 
in  a  more  'natural'  turbulence  characterized  by  increased  rotational  energy  and  less  influence of the 
initial  forcing  perturbations.  An  increased  mass  loading  also  results  in  increased  droplet  organization 
within  the  layer.  An a priori subgrid  analysis  is  then  conducted  which  shows  that  neglecting  subgrid 
velocity  fluctuations  in  the  context  of  large  eddy  simulations  results  in  significant  errors  in  predicting 
the  droplet  drag  force  for  Stokes  numbers St N 1. Similar  errors of  lesser  magnitude  are  also  observed 
for  the  droplet  heat  flux  and  evaporation  rate  when  thermodynamic  subgrid  fluctuations  are  neglected. 
An  extension  of  the  eddy  interaction  model  commonly  used  in  Reynolds  averaged  simulations  is  then 
proposed  in  order  to  account  for  the  missing  subgrid  information.  Probability  density  functions  (PDFs) 
of the  subgrid  fluctuations  calculated  across  homogeneous  planes  are  shown  to be highly  intermittent, 
particularly  near  the  laminar-turbulent  boundaries  of  the  mixing  layer.  However,  the  actual  subgrid 
PDFs  calculated  locally  are  much  less  intermittent  and  may  be  adequately  modeled  by  the  Gaussian 
distribution  throughout  the  majority  of  the  mixing  layer.  A  scale  similarity  model  is  then  employed  to 
predict  both  the  velocity  and  thermodynamic  subgrid  variances.  The  similarity  model  is  well  correlated 
with  the  actual  subgrid  variances  and  shows  good  agreement  in  predicting  the local fluctuation  intensities 
when  a  filter  width  dependent  model  constant  is  used.  The  subgrid  fluctuation  variances  acting  on  the 
droplets  are  then  shown  to  be  well  modeled  if  the  Eulerian  subgrid  variance  model  is  interpolated  to  the 
droplet  locations. 

I. INTRODUCTION 

Despite  many  recent  advances  in  the  direct  numerical  simulation  (DNS) of turbulent  two-phase  flows,['] DNS 

of 'two-way  coupled' flows in  which  the  dispersed  phase  mass  loadings are zuffkiently large to modulate 

the  turbulence are sparse. For these  flows,  large  numbers (- lo5 "-f- lo6) of individual  dispersed  particles 

are tracked in the Lagrangian  reference frame and the calculation of the coupling source terms appearing 
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in the  continuous  phase  transport  equations  results in a substantial  computational  cost  increase  relative  to 

one-way  coupled flows. Flows  considered in this  manner are generally  restricted  to  those  characterized by a 

dispersed  phase  composed of discrete  spherical  elements  having  small  volume  ratios (5  but  moderate 

mass  loading  ratios (- 10-1 --t- 10’) due  to  large  ratios  of the dispersed  to carrier phase densities. Practical 

applications for flows requiring two-way  coupled  descriptions are widespread  including  both  solid  particles  and 

liquid  droplet flows; e.g.  pulverized  coal  combustion,  spray  painting,  spray combustion, atomization,  weather 

prediction,  etc. 

Bo-way coupled DNS of incompressible  box  turbulence  laden  with  solid particles have been  performed  in 

several  past ~ t u d i e s [ ~ ] [ ~ ] [ ~ ~ [ ~ ] [ ~ ]  by  tracking as many as lo6 individual  particles. For these solid particle  flows 

the only coupling term is the particle  drag force which appears in the carrier phase  momentum  equation.  In 

these  studies  it is observed that the turbulence  is  selectively  modulated  by the particles due to the preferential 

concentration  mechanism  through  which  particles  tend to concentrate  in  high strain (low vorticity)  regions of 

the  flow  (e.g. Ref.[ 11). In the  absence of gravity,  the  total  turbulence  energy is diminished by the particle drag; 

however, a relative increase in  the  high  wavenumber carrier gas energy  spectrum is f ~ u n d . [ ~ ] [ ~ ]  Gravitational 

acceleration of the particles imparts anisotropy  to  the  turbulence by adding  energy to the gas phase  momentum 

component  parallel  to the acceleration. This energy is then  transferred  to the other velocity  components 

through  the  pressure-strain  correlation.  Elghobashi  and True~dell[~] postulate that this process  results in a 

reverse cascade of energy  which  can  reduce  turbulence  decay  rates  relative  to either unladen or zero  gravity 

flows. 

Evaporating  droplet  laden flows incur  substantially  heavier  computational costs than  solid  particle flows 

due  to: (1) additional  transport  equations for the  droplet  mass  and  temperature, (2) additional mass  and  energy 

coupling  terms,  and (3) the need  to  treat  the  gas  phase equations using a compressible (or variable  density) 

formulation. Ma~hayek[’][~I conducted DNS’of both  isotropic  and  homogeneous shear box  turbulence  using 
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an  energy coupling formulation  which  is  strictly  valid  only for constant  and equal liquid  and  vapor heat 

capacities. Mashayek's studies tracked  as  many as 5.5 x lo5 evaporating droplets obeying a 'mass analogy' 

evaporation  law[9]  with complete mass,  momentum  and  energy  coupling,  and solving the compressible Navier- 

Stokes equations for the gas phase  carrier  flow.  Recently  Miller  and Bellan[lo] (hereinafter referred  to  as MBI) 

extended  two-way  coupled  DNS  to  non-homogeneous flows with  simulations of a (pre-transitional) planar 

mixing  layer  having  one stream laden  with as many as 7.3 x lo5 evaporating droplets. Their formulation 

extends that of Mashayek and is valid for varying  liquid and vapor  heat  capacities. Furthermore, they  employ 

the non-equilibrium  Langmuir-Knudsen  law  to  describe the droplet  evaporation  which has been  shown  to  be 

valid  over  a  broader  range of conditions  than either the  mass  analogy or standard equilibrium rapid  mixing 

models.[9] The MBI simulations showed that at low gas temperatures the droplet laden stream rapidly  saturates 

due  to  the  buildup of evaporated vapor and cooling of the gas temperature resulting from latent heat  effects. 

After  this  saturation  occurs, the droplets in the free stream essentially  cease vaporizing; however,  droplets 

near  the  mixing  region  become  engulfed into the  layer  where  they  come  into contact with higher temperature 

carrier gas and  continue  to  evaporate. This results  in  a  large  disparity  between the droplet size distributions 

found  in the interior  and  laden stream portions of mixing  layers.  Miller  and  Bellan["] have also used the 

same simulation database to address  assumed  probability  density  function (PDF) modeling of  non-premixed 

combustion in Reynolds  averaged  Navier-Stokes (RANS) simulations.  They derived the necessary  mixture 

fraction  moment  transport equations, analyzed their  budgets  and  observed that the assumed p PDF poorly 

represents  the  simulated scalar fields. 

A  different  approach from DNS  is  large  eddy  simulation (LES) in  which the governing equations rather than 

being  resolved  down  to the Kolmogorov scale are instead  filtered  locally in either physical or wavenumber 

space; therefore,  the effects of the  small scales of the  flow  field must  be Although  generally 

employed  for single phase flow predictions, LES is also used  to  study  particle disper~ion.['~1['~1['~][~']['~][~~] 
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In reality,  the  particles are convected by the  superimposed  effects of  both  the resolved (filtered) velocity  field 

and  the  unresolved  subgrid  velocity  fluctuations.  However, in the  cited  references  the subgrid effects  were 

always  neglected  under the assumption  that  the  particle  inertia is sufficiently  large;  thus the particles  should 

not  significantly  interact  with the small  scale  flow  motions. This assumption  has  never  been  tested  against 

either DNS or experimental data, and  the  actual  influence  of  subgrid  fluctuations  may  have  a  significant  effect 

on  dispersion  even for particles with  Stokes  numbers St N 1 depending on the flow Reynolds number  and  the 

relative filter width. The situation becomes  more  complex for evaporating  droplets due to the additional  effects 

of subgrid  thermodynamic fluctuations which  affect  both the droplet  heating  and the vaporization  rates.  One 

exception  to  the above references is Pannala  and Menod20] who  perform LES of droplet laden  turbulence  using 

'a modified  eddy  interaction model (El") to  account for subgrid velocity  (but  not thermodynamic) fluctuations. 

The subgrid  variance is provided  by  an  additional  transport  equation for the subgrid kinetic energy; however, 

the EIM was simply extended without  further  comment,  and no a priori testing  was  mentioned. Also, using 

the  subgrid  kinetic  energy  equation  for  the  fluctuation  variances is not  directly applicable for flows in  which 

the  subgrid  velocity  may be anisotropic. 

The objectives of the present paper  are  to: (1) extend the simulations of MBI  to  sufficiently  high  Reynolds 

numbers  to capture the transition to  mixing  turbulence for multi-phase  flows  where  both  evaporation  and  com- 

plete  two-way coupling are important,  and (2) use the simulated  database to perform an a priori investigation 

of the  role of subgrid fluctuations on the  transport, heating and  vaporization  of droplets in the context of LES. 

The mathematical  formulation  and  numerical  approach are described in Section 2. Results are presented  in 

Section 3; this  section includes a  detailed  description  of  the  transition  to  turbulence  and the corresponding 

effects of the  flow  Reynolds  number  and  droplet  mass  loading  ratio.  Subgrid fluctuations are then  investigated 

based  on  filtering  the  resolved DNS fields using  both  spherical  and  cubic  spatial filter kernels. An extension 

of the EIM, which  is  tested a priori, is then  proposed  to  model  both  velocity and thermodynamic  subgrid 
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fields for LES which  is  based  on a scale  similarity  model  to  predict  subgrid  variances. Section 4 contains 

conclusions  and further discussions. 

11. FORMULATION AND APPROACH 

The  governing equations describe the  Lagrangian  transport of discrete evaporating droplets through a continuous 

and  calorically  perfect carrier gas flow. These equations  were  described in detail in  MBI['O] and  will  therefore 

only be summarized  here. The only  difference  between the equations described  below  and those used in MBI 

is that  in the present  paper  we  choose to neglect  thermodynamic  non-equilibrium effects which  are known 

to  be insignificant for the droplet sizes (- 100p-n) and  relatively  low gas temperatures of interest in  this 

study.[g] In this case the model  reduces  to  the  classical  rapid  mixing  model;  i.e. the 'D2 law' combined  with . 

a transient droplet temperature equation.  Throughout the formulation, the subscripts C, V and L will  be  used 

to  distinguish quantities specific to the carrier gas, the evaporated  vapor  and the liquid, respectively; whereas 

the subscript G refers to the carrier plus  vapor  gas  phase  mixture. The compressible form of the governing 

equations for the gas phase (carrier plus  vapor  mixture)  include  mass,  momentum and energy exchange between 

the gas and the dispersed evaporating liquid  phase: 

where p is the gas phase  density, u; is the gas phase  velocity, et = e + uiu,/2 is the  total gas energy,  i.e. 

kinetic  energy plus internal  energy [e = (1 - Yv)C,,cT + Yv(C,,,vT + hb) with  vapor  reference  enthalpy 

5 



h;], P is  the  thermodynamic  pressure, YV is the mass  fraction of the  evaporated  vapor,  and Rc and RV are 

the carrier gas (subscript C)  and  vapor  (subscript V) gas constants (i.e. R = %/W with universal gas  constant 

% and  molecular  weight W ) .  Furthermore, Tij is the  Newtonian  viscous stress tensor and p ,  X and r are  the 

gas phase  viscosity,  thermal  conductivity  and  Fickian  diffusion  coefficient,  respectively (hereinafter assumed 

to be constants). The right  hand side (rhs)  terms S I ,   S I I , ~  and SIII  describing  the  phase couplings of mass, 

momentum  and  energy,  respectively,  are  defined  below. 

The modeled  Lagrangian equations describing  the  transient  position (X i ) ,  velocity (vi), temperature (Td) 

and  mass (md) of a single droplet are: 

dXi - 
dt 

= vi, 

where  the  subscript d denotes individual  droplet conditions, the particle  time constant for Stokes flow is 

Td = p ~ D ~ / ( 1 8 p ~ ) ,  D is the droplet  diameter, CL is the heat  capacity of the liquid and the latent  heat 

of evaporation is Lv. Additionally, the gas mixture  heat  capacity is calculated using a mass averaging; 

Cp,c = (1 Yv)CP,c + YvCp,v (evaluated  at  the droplet location)  where Cp,c and CP,v are the  constant 

pressure  heat  capacities  of the carrier gas  and  vapor,  respectively (Cv,c and Cv,v are the corresponding constant 

volume  heat  capacities). The gas phase  Prandtl  and Schmidt numbers are PrG = pCp,~/X and SCG = p / ( p r ) ,  

respectively. The evaporation rate is driven by the  mass  transfer  number; BM = (Ys -Yv)/( 1 -Ys) (subscript 

S denotes  droplet surface conditions). The semi-empirical Rmz-Marshall correlations are used for the  Nusselt 

(Nu)  and  Sherwood (Sh) numbers,  whereas fi is an  empirical  correction  to Stokes drag accounting for finite 

droplet  Reynolds  numbers [Red = p I u+ -vi I D / p  is  based on the slip velocity  and Re6 = pUbD/p is based 
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on the  blowing  velocity, U b  = - Ad /(7rpD2)]: 

1 + 0.0545 Red +0.1 Rei’2 (1 - 0.03 Red) 
l + a l R e b l b  fl = 7 

a = 0.09 + 0.077exp (-0.4Red) , b = 0.4 + 0.77exp (-0.04Red) . 

The function j5 = p / ( e p  - 1) is an analytical  evaporative  heat  transfer  correction,  where the non-dimensional 

evaporation  parameter p = -1.5 PrG Td &d / m d  is constant for droplets obeying the ‘02 law’. The vapor 

surface  mass  fraction is calculated directly from the surface molar  fraction (xs) which is obtained by equating 

the vapor  and  liquid fugacities at the surface (i.e. xsP = Psat), where  the  saturation pressure (Psat) is provided 

by the  Clausius-Clapeyron relation, yielding: 

where Patm is atmospheric  pressure, TB,L is the liquid saturation temperature at patm (i.e. the normal  boiling 

temperature). As shown in MBI, the latent  heat  must be a linear function of temperature for calorically  perfect 

species: LV = h$ - (CL - CP,v)Td. 

The choice of a  Lagrangian  reference frame for the individual  droplet  conservation equations leads  to  the 

following  general form for the phase  coupling  terms: 

SZ1,i = - { [E+ A d  V i ]  } 7 

a Q 

SZZI = - { [ud$ + &+ { + hv.s)] , 

where the summations are over local  individual  droplet contributions, hv,s = CP,vTd + h$ is the evaporated 

vapor  enthalpy  at  the droplet surface,  and  the  single droplet evaporation  rhte (Ad),  drag force (Fi) and  heat 

transfer  rate (&) are specified by  the  modeled  droplet  conservation  equations. The local summations  are 

necessarily  grid dependent functions; the  summations are over  all  droplets (subscript a indicates the  individual 
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droplet  variables; no summation  over  Greek  indices)  residing  within  a  local  numerical  discretization  volume 

( A x 3 )  and  employ  a geometrical weighting  factor, war used  to  distribute  the  individual droplet contributions 

to  the  eight  nearest  neighbor  surrounding  grid  points  (i.e. comers of the computational volume A x 3 ) .  These 

source  terms  are  then  minimally  'smoothed'  using  a  conservative  operator  introduced by Miller and  Bellan['o] 

in order  to  retain  numerical  stability of the  Eulerian  gas-phase  fields. 

A. Temporally developing mixing layer 

The flow  geometry of interest is the  temporally  developing  mixing  layer  with one droplet laden stream shown 

in  Fig.1. The streamwise (XI), cross stream (x2) and  spanwise (x3) coordinates  have lengths L1, L2 and 

L3, respectively. Periodic boundary  conditions are employed for the x1 and x3 directions, and adiabatic slip 

wall  conditions are used for the x2 boundaries. The initial  vorticity  thickness is SW,o where S, ( t )  = Avo/ < 

dul/dxg the  brackets <> indicate  averaging  over  homogeneous x1 - x3 planes and the mean  velocity 

difference across the layer, AUo = 2U0, is calculated from a  specified  value of the convective Mach  number, 

M, = U o / ~ ~ T o C p , c / C v , c  (TO is the initial uniform  temperature of the gas). The droplets are initially 

distributed  randomly  throughout  the 2 2  < 0 half of the  domain  with  uniform number density and  specified 

size distribution,  temperature and velocity.  Finally, the mean  velocity  and  number density profiles are smoothed 

near the centerline (x2 = 0) using an error function  profile,  and  initial  forcing perturbations are added  to the 

velocity field in order to excite the growth of both  spanwise  and  streamwise  disturbances.[l01 

B. Numerical  approach 

The governing equations are solved  numerically  using  fourth  order  explicit  Runge-Kutta  temporal  integration 

for all  time derivatives and eighth order accurate central  finite  differences  to  represent all spatial derivatives. 

A fourth  order  Lagrange  interpolation  procedure  is  used  to  obtain  gas  phase  variable  values  at droplet locations 

which,  in  general, do not reside at  grid  point  locations. The approach  is  essentially the same as that  described 
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in MBI with the  following three exceptions:  First,  it  was  found  that  artificial  numerical  oscillations in the 

solutions  can  become significant at  ‘long’  simulation  times. These errors  are due primarily to differencing  the 

non-linear convective terms, similar to  aliasing  errors in spectral  methods.  Non-dissipative central differencing 

schemes  such  as those used in this study do not  provide  sufficient  levels  of  numerical diffusion to  control  the 

buildup of these artificial oscillations.[2’] In order  to alleviate this  problem,  a  tenth order explicit is 

applied  to each of the primitive variables at each  Runge-Kutta  stage (we use  only  one tenth of the amplitude 

suggested  in  Ref.[21]  which  was  found  to  provide  sufficient  dissipation  without altering the physical  solutions). 

This filtering was  not required in  MBI due to  the shorter simulation  times  used  in that study.  Second,  the 

computational  grid is approximately  uniformly  spaced  with constant Ax = Ax1 x Ax2 x Ax3 (these  are 

approximate for reasons described below);  whereas MBI used  a  stretched  grid  compressed along the x2 = 0 

plane. 

The third  difference from the numerical  approach in MBI is that  the  present simulations are conducted 

on a  Hewlett-Packard Exemplar parallel  supercomputer.  MBI’s  Fortran 77 code has  been  parallelized  using 

the  Message  Passing Interface ( M P I )  subroutines for inter-processor  communications. The Eulerian  gas  phase 

equations  are  parallelized using three  dimensional  domain  decomposition  in  which all derivatives, source  term 

smoothing  and  the filtering operation are performed  using the ghost cell methodology.  A  variety  of  approaches 

which  differ  in their relative levels of communications  and  load  balancing  may be employed  in  parellelizing 

the  Lagrangian  droplets. In the present code we choose to  treat  the droplets by keeping them  under  the 

control of the individual  processors  calculating  the  local  physical  space  portion of the Eulerian  domain in 

which  the droplets reside. This approach  has  the  advantage of minimizing communications costs, but  does  not 

load-balance  well since nearly  half of the  domain  (and  processors)  has no droplets. 

111. RESULTS 

All  simulations  are conducted within  a  domain  having L1 = 4x1 = 29.166,,0, L2 = 1.1L1 and L3 = 4x3 = 

9 



O.6L1 where X1 and X 3  are the forcing wavelengths in the 5 1  and x3 directions,  respectively (the code is  written 

in dimensional  variables  using L1 = 0.2773). This allows for the  instigation of four spanwise rollers  along 

with  both  first  and  second  subharmonics  (with amplitudes 0.5 and 0.35 relative  to  the  primary  disturbance) 

to  excite  multiple  pairing events. The forcing amplitudes are F ~ D  = 10% and F ~ D  = 2.25% relative  to 

the  respective  spanwise  and  streamwise  circulations.[l0I The convective  Mach number is &Ic = 0.35, the 

initial gas temperature is TO = 375K and  the  pressure is initially  uniform  and equal to atmospheric pressure, 

Po = Patm. The droplets are initially  randomly  dispersed  throughout the 2 2  5 0 portion  of the domain  having 

uniform  number  density, zero local  slip  velocity  and uniform temperature Td,o = 345K. In contrast to MBI, 

we  consider  polydisperse initial droplet  distributions: The droplet time  constants are chosen using a  random 

number  generator  such that the Stokes number, St = ~dAU0/6,,0, has  a  Gaussian distribution at  each  location 

with 2 2  5 0,  with  a  mean < St > = 3 and  standard  deviation < (St- < St > ) 2  >1/2 = 1/2. The two 

calorically  perfect species considered  have  properties corresponding to those of air for the carrier gas  and 

decane for the liquidvapor (Table 1). These were  referred  to as pseudo-air  and pseudo-decane in MBI because 

the viscosity,  thermal  conductivity  and  species  diffusivity  have  artificially large values in order to  enable  a 

complete  resolution  of all pertinent  length  scales  as  required in DNS. Finally, the initial gas phase is  composed 

entirely of the pure carrier gas. 

The simulations conducted for the  present  study are summarized in Table 2 which  provides  the  flow 

Reynolds  number (Reo = poAUo6,,0/p), the  grid  resolution,  total  number  of droplets tracked,  the  mass 

loading  ratio M L  (mass of liquid  divided by mass of gas for x2 5 0), mean droplet number density  (per  unit 

62,0 volume),  and the grid spacing and  time step relative to  corresponding droplet scales. Each of the  runs 

described in Table 2 is named for both  the  type of flow (SP for single-phase  and Tp for two-phase)  and  the 

flow  Reynolds  number. The droplet  volume  fraction (VF) must be negligible (- or smaller) in order 

to  satisfy  the  assumptions  made  in  deriving the governing equations. Evaluation of V F  [which is  related  to 
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the  mass  loading  through the ratio of densities ( p l p ~ ) ]  yields V F  = 2.9 x and V F  = 7.2 x for 

M L  = 0.2 and M L  = 0.5, respectively. By fixing the  remaining  flow  parameters, the simulations described in 

Table 2 allow us to study the isolated  effects of the  flow  Reynolds  number  at  fixed M L  = 0.2  (runs TP200, 

TP350, TP500a and TP600) as well as the  effects of the  mass  loading ratio for fixed Reo = 500 (runs 

SP500, TP500a and TP500b). Note  also  that  the  grid  spacings  in  each direction (Axl, Axz, A z ~ )  are  not 

always  exactly equal since the number of grid  points  must be evenly divisible by the number of processors 

used  in each direction.  Unless  otherwise stated, all of the simulations  were performed using 64 processors 

with a 4 x 4 x 4 spatial decomposition. 

The  simulations described below  differ from those in  MBI  in  several  ways. The gas temperature is here 

higher in order to induce stronger evaporation  rates  and  delay the flow  saturation  process.[10] We also  consider 

here  polydisperse  rather  than  monodisperse  droplet size distributions in order to produce a more  ‘natural’ 

two-phase  flow.  Note that the Gaussian Stokes number  (i.e. D2)  distribution produces a diameter distribution 

which is skewed  towards smaller droplets in accordance  with  experimental  observations of sprays.[22]  However, 

the  most  important  difference  in  the  present  simulations is the  combination of higher Reynolds numbers  and 

multiple  spanwise  vortex pairing excitations. In MBI  only  pre-transitional  mixing was considered for shear 

layers  dominated  primarily  by  large scale spanwise  and  streamwise  vortical structures. The present  flow 

simulations are performed in order to capture the transition to turbulence  (described in detail below)  and  create 

a more  ‘natural’  flow field indicative of higher  Reynolds  number  experimental flows. Moser and R ~ g e r s [ ~ ~ ] [ ~ ~ ]  

showed  that  the  temporally  developing  mixing  layer  will  evolve  through a natural transition  to  small scale 

mixing  turbulence  at  sufficiently  large  Reynolds  numbers  when  multiple pairings and substantial streamwise 

forcing  perturbations are present.  Their simulations were  conducted for incompressible,  single-phase  Navier- 

Stokes flows  using a pseudospectral  numerical  method  and  resolutions as large  as 192 x 212 x 128. Simulation 

SPSOO in  Table 2 is  nearly  identical  to  simulations  HIGH2P  and  TURB2P  in Ref.[24] (we do not  begin  with a 
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turbulent  field as in TURB2P,  but we  break the  natural  symmetry  between  streamwise roller pairs  which  was 

retained in HIGH2P),  with the primary  exceptions  that SP500 is compressible  flow  with  confined  boundary 

conditions  rather  than infinite free streams.  Despite  these  similarities,  simulation SP500 uses  a  substantially 

finer  grid  resolution  for  two  reasons: First, the  present  numerical  method,  though of  high order accuracy, is 

not  as  accurate  as  the  pseudospectral  technique  used  by  Moser  and  Rogers;  and second, a finer resolution 

is  used  to ensure an accurate capture of the  two-phase flows TP500a  and  TP500b  which  contain  additional 

two-way  coupling effects on the small scales of the gas phase.  Note  that  our simulation TP600 has  a  flow 

Reynolds  number  which is 20% larger  than the largest  simulated  by  Moser  and  Rogers.[24] In contrast,  the 

largest  temporally developing mixing layer simulations  performed  to  date  were initialized using two  velocity 

fields obtained from separate DNS of a  turbulent  boundary layer in  order  to  produce  a more natural turbulence 

and  self-similar states.["] These simulations  were also for single-phase incompressible flow and  utilized as 

many as 512 x 210 x 192 collocation points (x 15% more  grid  points  than TP600). We do not  have  turbulent 

droplet  laden  boundary layer simulations available  and  therefore  choose  to  study the transition process  from 

initially  laminar  (though  perturbed)  velocity fields. Finally, we note  that  the  present simulations, while  rivaling 

the largest  previous  single-phase  DNS  resolutions,  employ  nearly  an  order of magnitude  more  Eulerian  grid 

points,  and  nearly a factor of six more discrete particles  than  previous  two-phase  DNS. 

Table 3 shows the total  memory,  average clock time per iteration  (on  both 8 and 64 CPUs) and  total 

number  of  iterations for all of the simulations. The iteration  time t ,  is an average over all iterations  and is 

based  on  the clock time rather than  the  CPU  time  which is unavailable  on  this architecture. Therefore, t ,  

can  fluctuate  significantly from one  simulation  to  the  next due to  the  relative  level of computer usage  at  the 

time  the  simulations are performed.  Nevertheless,  the  scaleup  is  nearly  linear  with  both  memory  size  and 

number of CPUs for both  single-phase  and  two-phase simulations (not  shown graphically). Finally,  Table 4 

shows  the  relative  time spent on  each  portion of the  droplet  calculations  including  the interpolation, building 
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source  terms ( S I ,  Srr,i and Srrr), source  term  smoothing  and  also  the  droplet transfer between CPUs as  the 

droplet  enter/exit  the  portions of  the  domain  controlled by the  processors.  Each of these  procedures  must be 

performed  during  each  Runge-Kutta  stage (four times  per  time  step). The table clearly shows the  relatively 

heavy  toll  that  droplet  communication  plays  in  a  mixed EulerianLagrangian flow  problem such as this,  despite 

minimizing communication costs at  the  expense of load  balancing. 

A. Evolution of the mixing layer 

The  mixing  layers described in this  paper  have  many similarities to  those described in MBI. In  order  to  avoid 

excessive  repetition of known results we first give  a  brief  summary of some of the salient features of droplet 

laden  mixing  layers as observed in  MBI.  In  that  study, Miller and  Bellan investigated the effects of the  mass . 

loading  ratio,  the initial droplet size, the  streamwise forcing amplitude  and  the initial droplet temperature (for 

Reo = 200 with a single spanwise  vortex  pairing). They found  that for the low gas temperature  mixing 

layers, all of the M L  > 0.02 flows underwent  a  process of ‘evaporative  saturation.’ For these  flows,  the 

droplet  laden stream rapidly  became  saturated  (a  cessation of vaporization)  due to a combined buildup of free 

stream  evaporated  vapor and cooling of the gas flow due to  latent  heat  effects. It was also observed  that  this 

saturated  state  (described  by the long  time  mean  gas  temperature  and  vapor  mass fraction profiles) is  essentially 

independent of the initial droplet mass  loading  ratio  and size distributions;  i.e. it is primarily  governed by 

the  initial  gas  temperature and the latent  heat of the liquid. Thereafter,  the  mixing layer behaved as  a  density 

stratified  (due  to the evaporation) mixing layer in  which the laden  stream contained solid (non-evaporating) 

particles;  with  the exception being  that droplets entrained  into  the  mixing  region are in contact with  higher 

temperature,  lower  vapor content, fluid  and  can continue to  completely  vaporize.  In  MBI this saturated state 

was  characterized by  mean  temperatures  and  vapor  mass fractions in the  laden stream of < T > x 340K 

(with TO = 350K) and < Yv > M 0.04. In  the  present  simulations  a similar saturation process  is also 

observed;  however, the initial gas temperature is larger, so that  the  flows saturate with < T > M 345K 
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and < YV > = 0.09 (not shown). The  differences  between  the  present  flows  and  those in MBI  are  therefore 

primarily in the  excitation of small  scales  inherent  to  the  mixing  transition  process. Therefore, only a relatively 

brief  description  of  the  physical  evolution of the  flows is given  below  prior  to  presenting  the  subgrid  analyses 

which are the  main focus of this  study. 

One of the most fundamental measures of the development of a mixing  layer is its  growth  rate. The growth 

rate is generally  measured by examining the  time  evolution of a mixing  layer  thickness scale such as that  given 

by the vorticity  thickness.  However,  the  vorticity  thickness is a function of the  mean  velocity  derivative  and 

can be sporadic  in  time. Therefore, a smoother  measure  of the growth  rate is given  by examining an integral 

quantity  such as the momentum  thickness  denoted by 6,. Previously, 6, has  generally  been  defined  to  describe 

either constant  density, or time independent free stream momentum  However, the present  flow is 

characterized  by a time  dependent  mean  gas  phase  momentum in the  laden stream due to the evaporation of 

the high  molecular  weight  vapor.  Therefore,  we define a new  momentum  thickness as: 

where < p u l > 1  and <pu1>2 are the  time  dependent,  planar  averaged  streamwise  momenta  evaluated  at  the 

z 2  = - L 2 / 2  and z 2  = + L 2 / 2  slip walls,  respectively (note that < p u l > 1  is negative). This definition  accounts 

for the  effects  of  evaporation, as well  as the finite bounded  domain size and  recovers  previous  expressions  when 

the  density is constant and the walls are moved  infinitely far apart.  Figure 2 depicts the  temporal  evolution 

of the  momentum  thickness as a function  of  both the flow  Reynolds  number  and  the  mass  loading  ratio.  It 

is known  from  previous  single-phase DNS studies  that  the effects of forcing  can significantly influence  the 

entire duration  of a mixing  layer,  and  ‘truly’  self-similar  profiles are only  obtained  when  unforced,  turbulent 

initial  conditions are used[2s] (see also Ref.[26]); in which case linear  growth  rates  would  be  expected. The 

oscillations in the  momentum  thickness curves in Fig.2  are  therefore  evidence of forcing influence  on  the 

mixing  layer  development. As the flow  Reynolds  number  is  increased,  the  corresponding decrease in  viscosity 
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results in a growth  rate  which is more  strongly  influenced by the  initial  forcing  as evidenced by the  more 

discernible leveking  of the curves during  the  two  pairing events (at  times tAUo/&,o M 45 and M 80). Fig.2b 

illustrates  the  effects  of the mass loading  ratio on 6,. Similar to  MBI, we observe a reduction in the  growth 

rate  with  increased M L  through  the  time of the first pairing event (the  simulations in MBI ceased  at  time 

tAUo/6,,0 = 50). However, after this  time  the  trend  reverses  and  the  second pairing culminates with case 

M L  = 0 (SP500) having the smallest  momentum  thickness. This feature  can  be attributed to  the  presence 

of the  droplets  acting  to reduce the influence of the initial forcing as indicated by the more linear nature  of 

the of the curves in  Fig.2b  with  increasing M L  (explained  below).  It  would appear that the growth  rates for 

all curves  in  Fig.2b are essentially the same; however,  lower mass loading runs show stronger influence of 

the forcing (indicated by the leveling at the pairing  times)  and  therefore  tend to ‘criss-cross’ the more  linear 

large  loading  curves. In this respect, the conclusion  in MBI regarding  the  effects of M L  on the mixing  layer 

growth  rate  applies  only to the single-pairing,  pre-transitional  simulations  conducted  in that work  and  not  to 

the  post-transitional state of the layer. We incidentally  note that the  momentum thickness Reynolds  number 

(Re, = poAUo6,/p) commonly  used  to describe mixing  layers  can be obtained  by multiplying the  curves  in 

Fig.2 by their corresponding Reo values: For example,  simulation TP600 has Re, !2 1460 at  the  final  time. 

The temporal  development of two indicators of the transition  to  mixing  turbulence are presented in  Fig.3. 

The first is  the  instantaneous  squared  vorticity  magnitude  averaged  over  the entire domain (denoted by the 

double  brackets, <<>>). The second indicator is  the average of the  positive  portion  of the squared  spanwise 

vorticity  magnitude  normalized by  the  total  .average of the same squared  component (including the  mean 

vorticity; H in Figs.3~ and  3d is the Heaviside function). These averages  provide a good indicator of the 

rotational  nature of the flow fields at  all  times  since the use of adiabatic  slip-wall/periodic  boundary  conditions 

implies  that a fixed  amount of fluid  mass  and  total  energy  are  being  tracked  within  the system. Moser  and 

showed  that  transition  begins during the first pairing  event  for  sufficiently three dimensional  flows 
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as a  result of interactions  between  ‘collapsed  rib’  and  ‘cup’  structures.  This  process  is indicated quantitatively 

in Figs.3a  and  3b by the  sudden  rapid  increase in the  rotational  energy of the fluid within  the  domain in the  time 

interval  between  the first rollup (tAUo/6,,o M 25)  and  the  completion of the first pairing (tAUo/6,,0 M 50)  for 

sufficiently  large  Reo.  According  to  Moser  and  Rogers, after the  first  pairing,  vortex stretching increases  the 

complexity of the  flow  until the second  pairing  produces an apparently  fully  turbulent  flow. This description 

of the  process is consistent with  observations of the  present  droplet  laden flows (see also below). The relative 

amount  of  positively  rotational  fluid (see Figs.3~ and  3d) is also particularly indicative of the transition  to 

turbulence  since the mean flow is entirely  composed of w3 5 0 at  time t = 0. Therefore, any  positive  vorticity 

appearing  at later times  must be produced by vortex stretching and  bending  which produces small scale ‘eddies’ 

of both  signs.[B]  Clearly, the degree of transition  increases  markedly  with  Reo;  however, it is interesting  to 

note  that  the flow is more  rotational for large  mass loading ratios  (see also Fig.3b). The increase of rotational 

fluid  energy  with M L  occurs despite  the fact that  on  average  the  flow  loses kinetic energy  to  the  droplets 

through  the drag force.[’’] This effect  can  presumably be attributed  to  two  influences. First, the  curl of the 

momentum  source  term, V x SII ,  may act  directly as a production  mechanism for the vorticity  equation. 

Second,  the source term S I I , ~  is composed  of  a  variety  of  wavelengths  which  can introduce disturbances in 

addition  to those intentionally  installed by the forcing. 

4 

1. Instantaneous flow fields 

The qualitative  nature of the fully  developed  flow fields is illustrated in  Figs. 4 and 5 which show instantaneous 

contours  at  time tAUo/6,,0 = 85 from cases TP600 and TP500b, respectively.  At  this  time, the corresponding 

momentum  thickness Reynolds numbers  are Re, = 1400 and Re, = 1213 for runs TP600 and TP500b, 

respectively. The contours correspond  to  the  same  ‘rib  plane’  (a  plane  intersecting  one  of the initially  forced 

streamwise  vortices),  and depict the  spanwise  vorticity,  vapor  mass  fraction  and droplet number density.  The 

number  density is calculated exactly as the  coupling source terms  described  above,  i.e. n = E, {wa/A$} ,  

16 



and  has  dimensions  of  number  of  droplets  per unit volume.  Contours of n are only qualitative representations 

of the  relative droplet locations within the  particular  planes,  as n is  a  grid  dependent  function with little 

quantitative  value.[”]  Note also that  the contours of n only  provide  information  on the droplet locations, not 

the  droplet sizes and/or degree of evaporation.  Despite  the  discernible  presence  of the large scale structures, 

both  the TP600 and TP500b flows exhibit  a  broad  range of excited  eddy scales and are qualitatively  similar 

to  experimentally  observed  turbulent  mixing  layers.  In  addition  to  the  obviously more ‘turbulent’  vorticity  and 

scalar  fields, the droplet concentration fields are in  both cases significantly different than those described  in 

MBI. In that  pre-transitional  study,  the droplets were  shown  to be ‘thrown’ from the  high  vorticity  fluid  and 

to  congregate  in  high strain regions  due  to their inertia through  the  preferential concentration mechanism;[27] 

the  droplet  locations  ‘mapped’  both the primary  spanwise  and  streamwise structures by clearly clumping  the 

droplets  around the peripheries of  both structures (the ‘focusing’  effect  discussed  by Crowe et.aZ.[28]). Although 

the number  density contours in Figs.&  and 5c are still indicative of preferential concentration, this  occurs  on 

a much smaller scale than those in  MBI.  Particularly for simulation TP600, with its larger Reynolds  number, 

the  concentration field shows a mix of characteristics seen in  both  MBI  and those observed previously  in 

DNS of solid particle dispersion in isotropic  turbulence.[27]  These  observations of smaller scale preferential 

concentration  in the mixing layer are in agreement  with  experimental observations of high  Reynolds  number 

particle  laden  mixing layers (e.g.  Ref.[29]).  Remarkably,  although  the TP500b flow field shown in Fig.5 

has  a  lower Reo than TP600, the  large scale structure appears  to  be  less  organized,  and  correspondingly 

more  characteristic of ‘real’ turbulent  mixing  layers. This observation  is consistent with the previously  shown 

momentum thickness in that the larger  mass  loading  ratios  appear  to  ‘break  up’ the effects of the initial  forcing 

perturbations,  thus resulting in a  more  ‘natural’  turbulence.  Note  that  the droplet concentration appears  to 

be somewhat  more  organized  within the mixing  layer for the M L  = 0.5 case (Fig.%)  as  compared to the 

h f L  = 0.2 flow at  the same Reo (Fig.6). This is evidenced by the  appearance of some droplets within  the 
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‘void’ regions  of  vortical  fluid in the  interior of  the  layer,  and  occurs  because  the droplets in Fig.6  are  smaller 

than  those for lLlL = 0.5 (see below) due to  a  relatively earlier saturation of the larger  mass  loading  flows 

(see  also MBI). 

Moser  and  discussed  the  presence of secondary  Kelvin-Helmholtz  type  rollup  within  their  largest 

Reynolds  number  mixing  layer  simulations  resulting in the formation of thin sheets of  spanwise  vorticity 

(see  e.g.  Fig.15 of the citation). These  secondary  rollups  were  observed along the interior and  periphery 

of the primary  spanwise  vortices  and are considered to aid  in the transition  to  turbulence. Similar features 

are observed  in  the  present  high  Reynolds  number simulations (SP500, TP500a, TP500b and TP600; not 

shown),  but in addition, and only for the highest  Reynolds  number  case, TP600, we find another  unique 

secondary  instability  involved  in  the  transition  process. This instability is indicated  by the arrows in Fig.4  and 

is  most  clearly discernible in  the  vapor  mass  fraction contours of FigAb. The mean flow is to the right in 

the upper  portion of the figures (22  > 0),  creating  a shearing instability  beginning  in the braid  region  of  the 

upper  left  quadrant  of the figures. Small  Kelvin-Helmholtz instabilities are clearly visible on the free stream 

edge of the  braid in the contours. As the  mean free stream  flow  passes  over the braid, the associated  shearing 

causes  the instabilities to  travel  towards  the  center of the domain,  growing  in size (additional arrows).  The 

turbulentllaminar  boundary  on  the  upper  portion of the  mixing layer therefore acts very  much like a  spatially 

developing  mixing  layer of smaller scale than  the  primary  layer  on  which  it is formed. The third  and  fourth 

arrows  to  the  right of Fig.4b  clearly  show  these  secondary  vortices as discerned  by  the  vapor  mass  fraction 

contours. The wg contours within  the  boxed  section  in Fig.4b highlighted in FigAd presents evidence of  an 

interaction or pairing of these  secondary  structures  (note  that 6,,o/Az x 10.3 so Fig.4d contains approximately 

82 x 62 grid  points).  Finally, as the primary  mixing  layer continues to  grow,  these structures are engulfed  into 

the  larger  scale  spanwise structure increasing  the  turbulent  nature of the flow.  Remarkably,  these  secondary 

features are not  observed either for the  lower  Reynolds  number  flows with Reo = 500, nor on the 2 2  < 0 
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portion of the TP600 flow. This lack  of  secondary  rollups  on  the  laden stream side of  the  layer  can  be 

attributed  to  the stabilizing nature of the  larger  density  gradients in this  region (not shown) which  result 

from  the  evaporation of the high  molecular  weight droplets (see also  MBI). We therefore conclude  that  the 

observed  secondary  instability is a  high  Reynolds  number  effect  and  should be prevalent in  both  single-phase 

and  multi-phase  experimental  turbulent  mixing  layers. 

2. Droplet  size  distributions 

As mentioned  above, the simulations in  Table 2 were all initialized  with  polydisperse droplet size distributions. 

Each  of  the flows has an  initially  uniform  number  density in the laden  stream;  however, the local droplet  sizes 

are chosen  randomly  such that the resulting Stokes number  distribution is Gaussian with < St > = 3 and . 

standard  deviation  equal  to 0.5. Figure  7  shows  the long time  statistical state of the Stokes number distribution 

for each of the  two-phase flow simulations.  At  this  time the layer is quasi-saturated  with  evaporation  occurring 

primarily  only in the interior of the mixing  region. These statistics,  and all following planar averaged  droplet 

statistics, are  calculated  by dividing the x2 domain coordinate into 40 equal sized bins and calculating averages 

over all droplets  residing  within  each  bin.  In  order  to  achieve  accurate statistics, only bins containing greater 

than lo3 droplets are considered. By definition,  the  normalized  third  and fourth moments for any  variable 4 

are the skewness factor (p3) and the flatness factor (p4) defined by: 

For  the  initial Stokes number probability  density  function (PDF), or for any  Gaussian  PDF, p3 = 0 and 

p4 = 3. The illustrations  of Figs.7a - 7d  show  that the ultimate state of the Stokes number distribution  is 

nearly  independent of Reo over the  range  considered,  and  is cnly a  function of ML. The reduction in the 

initial  value of < St > is due to  evaporation  and is therefore an indication  of  the statistical state of the 

saturation  process  (i.e.  lower < St > indicates  later  saturation  with  respect  to the initial total liquid mass). 
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It is also  interesting  to  note  that  the  Stokes  number  standard  deviation  does not change in the  laden  stream 

despite  the evaporation. This presumably  occurs  because  the  temperature  (of  both  the drops and  the  gas) is 

relatively  uniform  and the evaporation  rate is relatively  slow (see Fig.lOb),  which results in the  deviations 

from  the  initial  variance of the  distribution  being  small.  On  the other hand,  interior  to the layer  the  standard 

deviation  actually  increases from its  initial  value of 0.5; we  conclude  that  the turbulence acts to  increase  the 

relative  range of droplet sizes. For all five flows of Fig.7,  the Stokes number statistics are almost  uniform 

and  a  near  Gaussian PDF  is retained for the  laden  stream, ~ 2 / 6 m  < -4. At the laminar-turbulent boundaq of 

the lower  stream near ~ 2 / 6 m  M -2, droplets  from  both the interior  turbulent fluid and exterior laminar  fluid 

regions are being  sampled in the statistics. This results in increased  intermittency and deviations from  Gaussian 

behavior;  particularly for the M L  = 0.5 case which saturates earlier.  However, for the interior portion of the 

mixing  layer, ~ 2 / 6 m  > -1, more uniform  distributions  of  droplets are sampled  (i.e. from purely  turbulent 

fluid) and closer to Gaussian statistics are  recovered. These results  regarding the droplet size distributions  and 

the  effect of M L  are in  good  qualitative  agreement  with the earlier finding in MBI, despite the  monodisperse 

initialization  used in the former study. Figure 7 also indicates that the final time state of  the mixing layers 

remains  that  of  a  two-phase flow with  significant  droplet mass in the  laden  stream.  At time tAUo/6,,, = 85 

the relative  mass of liquid to gas in  the x2/Sm -4 portion of the  layers is approximately 11% and 41% 

for the M L  = 0.2 and M L  = 0.5 flows,  respectively.  Throughout  the  remainder of the paper we  will be 

focussing  primarily  on these final time states of simulations TP500b and TP600. 

B. Subgrid analysis 

As mentioned  above, large eddy  simulation (LE) involves perfoming a filtering operation on the governing 

equations in order  to  effectively  remove  the smallest, unresolvable  scales of the flow under in~estigation.['~1['~] 

The  missing  information  results in 'Reynolds  stress like' terms  which  then  require modeling to close the  system 

of the LES equations. In the context of the present  two-phase  flow  this  corresponds to filtering the compressible 
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Navier-Stokes equations (1)-(5). If  we consider  for  the  moment  the  case in which  every  droplet  is  tracked 

through  the  LES  flow,  then  each  droplet will ‘feel’ effects from  both  the  resolved  and  unresolved  subgrid 

Eulerian  flow  variables. This statement  translates  mathematically in Eqs.(6)-(9)  through  the  potential  influence 

of all  subgrid  variables  on the droplet  evolution.  For example, if we denote the filtered velocity  field by q 

(defined  below),  then the subgrid  velocity  fluctuation can be defined as u: = u; - q and the instantaneous 

velocity  appearing in the droplet drag force is substituted  with the sum of  the  resolved  and unresolved velocities; 

ui .--) q+u:. Although  a  variety of past  research exists which  studies  solid particle transport through  turbulent 

flow  fields  generated by LES,[’41[’51[161[171[181[19] the vast  majorities of the investigations completely  neglect 

the influence of the subgrid  velocity u: on the particle trajectories.  This  neglect is done under the a priori, 

and  untested,  assumption that these  effects  will be negligible due to  the  particle’s finite inertia. That  is, it 

is assumed  that  heavy  particles are not  ‘jostled’  significantly by the  smallest eddies due to their inertia,  and 

hence  only the resolved  velocity  field  needs  to  be  considered  (despite  the  fact that particles with St - 1 are 

generally  considered).  Note that the above cited  LES aim at  predicting  the  ‘true’ particle trajectories  through 

the  flow  field,  not  a  filtered droplet velocity  field (filtering a  Lagrangian  point particle is meaningless  in  the 

context of LES). As mentioned  above, for evaporating droplets all  thermodynamic flow variables  appear in 

the  droplet  transport equations ( p ,  T ,  P and Yv) along with  their  corresponding  subgrid fluctuations, which 

complicates  the  matter even further.  However, if the effects of u!, are truly negligible, it seems reasonable  to 

neglect all other subgrid quantities using the same argument, since the droplet  velocity, temperature and  mass 

equations all  have exponential decay time scales approximately  equal  to Td [see (6)-(9)]. 

The DNS presented  in this paper are ideal  for evaluating the  effect of subgrid fluctuations on  the  droplet 

transport  due to their  large  resolutions,  number of droplets and  relatively  large  Reynolds  numbers. We will 

not  address  the  filtered Eulerian gas  phase  equations,  nor their modeling in this  paper. Several detailed 

investigations of this  kind  have  already  appeared in the  literature in  which the  behavior of various  subgrid 
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models  are  investigated  using  both a priori and a posteriori analyses of compressible mixing  layer^.[^^][^'] 

Although  these  studies do not  explicitly  address  two-phase  flows,  the  LES  modeled  Navier-Stokes  equations 

can be  used unchanged in their  single-phase  form to predict one-way  coupled particle laden flows. This 

procedure is also  valid for two-way  coupling if every  droplet is tracked,  since the source terms SI ,  SZZ,~ and 

Szzz can be directly  filtered during an  LES  without  requiring further modeling (this assumes that a  particular 

single-phase  LES  model for the Navier-Stokes  equations can also be  used  accurately for the two-phase  flow - 

an assumption  which seems reasonable). 

We begin by presenting some preliminary  definitions: The filtered  quantity 4 is related  to the instantaneous 

field q5 through the physical space filter defined by: 

where GA is the filter function with  the  requirement  that J Gh(yi)d3yi = 1. The flows of interest  exhibit 

variable  gas  density even for low Mach  numbers  due  to droplet evaporation.  It is therefore convenient to  define 

Favre  density  weighted filtered variables as 6 = pdF. The fluctuations  with  respect  to  both the non-weighted 

and  weighted  filtered  vafiables are 4' = q5 - 4 and 4" = q5 - 5, respectively. For variable density  flows 

of  the  type  considered  in this study,  the  velocity,  temperature  and  vapor  mass fraction appear most  naturally 

in  Favre  filtered form in the LES equations,  whereas the density  and  pressure appear most  naturally  as  non- 

weighted  filtered  variables  (e.g.  Refs.[30][31]).  Therefore,  hereinafter, all filtered and subgrid analyses  will be 

conducted  using p ,  iii, T ,  P and for the resolved field, and p', uy, T", P' and Y t  for the subgrid.  These 

will  be  assumed to be the actual fields which are available andor require  modeling for the droplet  transport 

in LES (Le.  we do not analyze or u: since these  will  not  appear in  the LES equations). 

" 

A wide  variety  of filter functions have  been  considered  in  the LES literature including both  physical  space 

filters and  spectral space filters (e.g.  Ref.[32]). In the  present  paper  only  physical space filters are discussed. 
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The two  filters of interest are the  ‘cubic  top-hat’  filter: 

and  the  ‘spherical  top-hat’  filter: 

where H(z) is the Heaviside function  and Af is the filter  width. The cubic  top-hat filter is the simplest  to 

integrate in actual applications yet  suffers from the fact that  transport equations filtered using this  function 

are no  longer  invariant to coordinate rotations  due  to  the  anisotropy of the  kernel  function.[32] In contrast,  the 

spherical  top-hat is isotropic  and  therefore, the rotational  symmetry of the governing equations is  preserved 

after  filtering.  Although this preservation is important from a  theoretical  perspective, the majority  of LES 

studies do not consider this effect  and  work  with  anisotropic  box filters. A  Gaussian spatial filter also  appears 

in the literature  and  has the further advantage of being  positive  definite in both physical and wavenumber  space 

(the top-hats are oscillatory  in  wavenumber space); however, it requires  integration  over the entire domain  and 

is therefore the least  computationally efficient. Therefore,  Gaussian filters are not considered in  this  paper. 

C. Filtered DNS 

The tyo filters  described above are applied  in  an a priori manner  to  the DNS database in order to analyze  the 

subgrid  flucmation fields in the context  of  two-phase  turbulent flows. Since LES is meant to be  conducted 

for relatively  large  Reynolds number flows,  it is important  to  have  a DNS subgrid  which is well  developed 

and  permits  the  performance of subgrid  analyses.  Although  detailed  subgrid  information is almost exclusively 

extracted from DNS generated  flow  fields,  experimental data (from  2D  planes) have also been  used  successfully 

in single-phase evaluat ion~;[~~I[~~1 however,  measurements of  the  type  required  in the present two-phase  study 

are  beyond  the  current capabilities of experiments.  For  droplet  laden  flows,  the simulations described in  Table 

2 are  ideally  suited  to  this  task due to both  the  large  resolutions  and  number  of droplets. This allows us  to 
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use  larger  filter  widths  than are available in standard,  lower  resolution, DNS studies, and  to  therefore  obtain 

more  robust  subgrid statistics. For  example, a typical filter width  that will be used  below  is A, M SW,o. For 

simulation TP600 this corresponds to A, = 11Az; leading  to  averaging  volumes  which  contain 113 = 1331 

grid  points for the cubic box filter, and n113/6 = 697 grid  points for the  spherical  top  hat  filter. Cases TP600 

and TP5OOb are initialized  with an average  of 1.39 x lo5 and  2.64 x lo5 droplets within  this  cubic filter 

volume ( see  Table 2), respectively,  and  therefore  provide  good droplet statistics. 

Since we are not interested in the context of this  study in taking  derivatives of the filtered variables  (with  one 

exception in Fig.8b),  all analyses are performed on the fine mesh. This is in contrast to working  only  with the 

LES grid  points, the ‘coarse  mesh;’  however, the distinction  will  not be important  hereinafter.  Nevertheless,  the 

choice of A, x 6,,0 corresponds to  very  reasonable  hypothetical  coarse  mesh LES resolutions for run TP600 

which  range from 27 x 30 x 16 to 54 x 60 x 32 grid  points for relative filter widths  of 1 5 Af/AdLES) 5 2, 

where AdLEs) is the LES mesh  spacing.  Note  that AdLES)  does not  have  to equal the filter width  applied 

to  the  governing  equations, and the ratio Af/AdLES) = 2 is often  recommended due to the smoother  fields 

being  resolved  on  the coarse mesh  (e.g.  Ref.[30]).  Hereinafter,  we  will  only analyze results from the  fully 

developed (tAUo/S,,o = 85) flow fields from the  two  largest  simulations, TP600 and TP500b due  to  their 

fine resolutions,  relatively large Reynolds  number  and  large  numbers of droplets; however,  many of the trends 

discussed  have  been  checked against results  from the remaining  cases.  Additionally, all filter widths  are  chosen 

to  be  odd  integer  values  of the DNS  grid  spacing so that the ‘LES nodes’  directly overlap the fine mesh  nodes. 

As an example of the relative small scale energy  in the flow fields both  before  and after filtering, consider 

Fig.8  which depicts planar  averaged  fluctuation  intensities  based on  both the DNS  and filtered DNS  data  as a 

function of x2 for run TP600. The mean  turbulence  kinetic  energy (IC) and  enstrophy (h,) are defined in the 

standard  manner: 



The  three  curves in each of  the  figures  correspond  to the averages  based  on the instantaneous DNS fields,  as 

well  as on fields produced by filtering  the DNS flows  using  both  the  spherical  top  hat (STH) and  cubic  top 

hat (CTH) filters (e.g. ui 3 TT~ in calculating IC). The extent of  separation  between  these curves in each of  the 

figures  provides  a direct measure of the  relative  energy in each of  the  subgrids. By far, the largest  amount of 

small  scale  subgrid  energy is found in the  vorticity  field since differentiating  the  velocity  obviously  amplifies 

the  small scale contribution of the spectrum; filtering removes  a  large  amount of this energy  (Fig.8b).  The 

kinetic  energy  (Fig.8a) also exhibits a  relatively  large loss of  energy  through filtering. On  the  other  hand, 

the  temperature (Fig.8~) and vapor  mass  fraction  (Fig.8d)  variances  show  the smallest effects from  filtering. 

This is to be expected since the Prandtl  number is PrG = 0.697 (Table 1) and the Lewis number is equal 

to  unity;  therefore, the smallest scales (the Batchelor scales) for these scalar variables are larger  than the 

Kolmogorov scale of the turbulence  and less energy is truncated  by  the filtering operation. Mean  velocity, 

temperature  and  mass fraction profiles  have  also  been  examined in a  similar  manner.  Although  the  unfiltered 

and  filtered  profiles are not  identical,  no  significant  visible  separations of the curves are observed (not  shown). 

Finally,  Figure 8 reveals that there  can be a  significant difference between  the  energy truncated by the  cubic 

and  spherical filter kernels for fields characterized by relatively  extensive  small scale energy; with  obviously 

greater  truncation for the larger volume cubic filter. 

D. Subgrid effects on droplet transport 

We now  turn  to the Eulerian subgrid effects on  the  transport  and  vaporization of the droplets. In  order 

to  gauge  these effects we perform an analysis similar to  that in Fig.8.  However, we  now  compute  planar 

averages of droplet  transport  variables as functions of  both the  unfiltered (DNS) and the filtered  Eulerian 

variables  interpolated  to  the  droplet  positions.  Figure  9  shows  both  the  averaged droplet drag force magnitude 

(7) and  droplet  Reynolds  number  calculated in this manner from simulations TP600 and TP500b (mo in 

Figs.9a  and  9b is a reference value  corresponding  to  the mass of  a  droplet  with St =< St >o= 3). Clearly, 
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a  substantial  change  is  produced in  both the  drag force (Figs.9a  and  9b)  and  the droplet Reynolds  numbers 

(Figs.9~ and  9d) by the filtering operation. This is  direct evidence that  errors will be produced by performing 

an  LES  which  explicitly  neglects  the  influence of subgrid  fluctuations (p’ and u:) on the droplet and/or  solid 

particle  transport. There is,  however,  a  somewhat  peculiar feature to  the  results  in Fig.9, in that  the  drag force 

(and  Red)  magnitudes  are increased when  they  are  based  on  the  filtered  Eulerian fields, despite the  fact  that 

energy  has  been  removed from the  velocity field. To understand why  this  occurs, consider a  particle  with 

St << 1 convected by the DNS  flow.  In  this case the  instantaneous slip velocity  (and drag force) will  be 

nearly  negligible  at  any  given  particle  position. If the Eulerian  velocity  is  then filtered, the re-calculated slip 

velocity  will  now be much  larger  due  to the fact that ui is replaced by Ci, while vi remains the same. This 

indicates that the increasing drag forces  observed in Fig.9 are somewhat  biased:  In  a  real LES calculation,  the 

particles  will adjust to the filtered flow as they  evolve  in  time  and the mean drag forces, which are primarily 

governed by Td,  will  be  much closer to the values  calculated from the DNS flow in Fig.9. This means  that  the 

proper  interpretation of Fig.9 is that in an LES in which the subgrid  is  neglected, there will be a  substantial 

error in the  prediction of the ‘true’  particle  velocities;  i.e. vi(Ci) # vi(ui). Figure 9 also shows  that  this 

error is substantial  even for both St - 1 and Red - 1. Finally,  Figures loa and lob depict the corresponding 

averaged  values  of the droplet heat f l u ,  Q (8), and  the  non-dimensional  evaporation  rate, p ,  from simulation 

TP600. Similar to the above discussions,  both of these quantities are  observed to be significantly affected  by 

the  Eulerian  subgrid  (though  to  lesser extent due to  the  Prandtl  number). 

In order to gain  more  understanding  regarding  the effects of the  Eulerian  subgrid on particle  transport, 

consider  the  ‘dispersion error’ introduced by neglecting  the  subgrid  velocity fluctuations in LES treating  solid 

particles  obeying Stokes drag (fi = 1). Define x and G to be the  droplet  position and velocity  vectors 

describing  a  droplet  whose  trajectory is governed  only by  ’the  filtered  gas  phase  velocity Ci: 



Note  that x and G are not filtered  variables.  Continuing  this  notation, we define X: to be the  droplet  position 

defined by subtracting  the  equation for x (21) from  that for Xi  (6); i.e. dX, l /d t  = vi - c. The trajectory 

of X: is therefore representative of the  difference  between the true  droplet  trajectory  and  that  predicted by 

LES which  neglects  subgrid  velocity  fluctuations.  Assuming  that  the  ‘large  eddy’  and  real  particles  start  at 

the  same  position  at time t = 0, a  ‘dispersion  error’  can  then be defined  by ensemble averaging the  trajectory 

of xi”: 

since < > can easily be shown to be equal to the filter of the average  velocity  (i.e. <$> = <4>) by 

the  properties of (17). The mean  velocity  difference  on  the  right  hand  side of (22) is non-zero  for  flows 

h, 

having  non-homogeneous  mean  velocity  profiles,  such as the present  mixing  layer. For example, a  modeled 

error  function profile for < u1 > will be ‘smoothed’  by the filtering  process.  If the subgrid fluctuations 

are not  (adequately)  modeled, this mean  velocity difference results in an error which on average reduces  the 

dispersion of the  particles  away from the center of the mixing layer (i.e. the right  hand side of (22) is positive 

for $2 > 0). Substituting into Eq.(22) for orders of magnitude  using Avo for the  velocity  difference  across 

the  layer, t e  - Sm/AUo for the eddy  turnover  time (te) and (< u, > - < C; >) - Af(AUo/b,) yields: 

where < X [  >ssp is the mean dispersion error estimate and 21, is the  mean  velocity error estimate induced by 

neglecting the subgrid fluctuations; i.e. 21, d < X $  >ssp l d t .  In (23) a  momentum thickness based  Stokes 

number  definition  has  been  used in order  to  more  accurately  reflect  the  instantaneous state of the mixing  layer; 

St* = TdAUo/Sm. Equations (23) suggest  that an LES particle with  unity Stokes number will  be  displaced 

Aj/6, momentum thickness units away from the center plane  per  eazh  large scale eddy turnover time  interval 

due  to  the  subgrid  velocity fluctuations. This dispersion  will  have  a  velocity  associated  with  it  which  is  equal 

to A,/&, times the free stream velocity  difference. These values  are  maximal estimates and  apply  only  to 
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particles  within  the  region of the mean  velocity  gradient  most  affected by the filtering. However, they  can 

I accumulate  over the duration of the  simulation  time  and  can  therefore  be  expected  to cause a  significant, yet 

artificial,  reduction  to the true  particle  dispersion  when LES is  performed  without  a subgrid fluctuation  model. 

I Consider  the  present analysis of simulation TP600 at  time tAUo/6,,o = 85. Using  a filter width A, = 6,,0 

yields (A,/6,)/St* = Ste1 x 0.5 (see  Fig.7a).  Equation (23) then  implies that a  mean  droplet  dispersion 

error  equal  to  one  half  of  the  instantaneous  momentum thickness occurs during each eddy turnover  time  unit. 

Of course, (23) also shows that these errors are reduced for increasing Stokes numbers. This  is to be  expected 

since  heavier  particles should be less  influenced  by  the  small scales due  to their inertia. However, in order  to 

safely  neglect the effects of  subgrid  fluctuations  on the fully  developed state of the layer, the Stokes number 

should  be  significantly  larger  than  the  total  number of eddy  turnover  time units in the simulation. For  the 

present  simulations  this  would  imply  that the droplet Stokes numbers  must be - 10 --f - 100 or larger in order 

to  safely  neglect  the effects of the subgrid  velocity  fluctuations  on  the LES particle transport. Similar arguments 

can be made concerning the effects of neglecting  subgrid  gas-phase  thermodynamic fluctuations on the  droplet 

heat  flux  and  vaporization  rate.  Furthermore,  evaporating  droplets  become smaller with time, implying  that  the 

relative  dispersion errors can also increase  with  time. The preceding  results and discussions therefore  suggest 

that  a  model of subgrid fluctuations on droplet/particle  transport is needed for LES of two-phase flows,  unless 

the Stokes numbers are much  larger  than  previously  assumed. 

E. Subgrid  modeling 

In this  section we propose  an  extension  of  the  ‘eddy  interaction  model’  (EIM) as a  means  of  modeling  the 

missing  subgrid fluctuations which  appear in the LES droplet  transport  equations. The is the  most 

commonly  used  model ia? multi-phase  Reynolds  averaged  simulations.  In RANS calculations only  the  ensemble 

(or time)  averaged  velocity field is  known,  and  the  effects  of  the entire ‘subgrid’  velocity  fluctuations - the 

rms velocity - on the particle trajectories  must be modeled.  In  the  EIM  the rms velocity  is  calculated by 
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sampling  from  a  Gaussian PDF using  a  random  number  generator.  The PDF has zero mean  and  a  variance 

usually  obtained by a transport  equation  for  the  turbulence  kinetic  energy;  as is already available in a IC - E 

model.  These  values are then  added  to  the  mean  velocity  values  at  the  particle locations producing an  isotropic 

turbulence. Closure of the  EIM  then  requires  only  a  model for the  particle’s  ‘eddy  interaction  time,’  which  is 

equivalent  to determining how  many  time steps this  sampled rrns velocity  is  used before a  new  random  value 

is chosen. In its simplest form, the E M  is employed by sampling  new  velocities at each time step (white  noise 

in time);  however,  many alternative, and  increasingly complex, versions  have  been proposed which  incorporate 

anisotropy and models for the Lagrangian time correlation matrix  in  order to obtain more accurate  residence 

times  (e.g.  Refs.[35][36]). 

We propose extending the EIM model to account for the effects of  not only the subgrid velocity,  but also 

of all of the Eulerian subgrid  fluctuations  which appear in the droplet  transport equations (p’, uy, TI‘, P’ and 

Y;) [note that the pressure variance is needed  to  evaluate  the  vapor  surface mass fraction (1  l)]. In  the  context 

of LES, the effects of the subgrid  velocity  fluctuations  on the particle  dynamics are much less significant  than 

in RANS where all of the turbulence  energy  needs  to  be  modeled.  It may therefore be  reasonable  to  expect 

that  the  extended EIM need  not  be as complex  as its RANS versions  in order to obtain satisfactory  droplet 

transport  statistics. Three issues are involved in extending  the EM: (1) determine the eddy  interaction  time 

appropriate for LES, (2) determine the form of the subgrid PDFs, and (3) estimate the  subgrid  fluctuation 

variances. The first issue is the easiest  to  resolve since in LES the  appropriate  length scale for the  ‘subgrid 

eddies’ is A,. This leads  to  an  interaction  time  equal  to Af/Jvil as a  first approximation. Estimating the  form 

of the  subgrid PDFs is not as simple  due  to  intermittency  effects  which can lead to strong deviations  from 

Gaussian  behavior  in  the small scales of turbulence  (discussed  below).  Additional uncertainties are associated 

with  choosing  a form for the vapor  mass  fraction  subgrid PDF as will  also be shown below.  Finally,  the  third 

issue  requires  modeling the subgrid  variances  for  each of the  Eulerian  variables  at  the droplet locations. Of 
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course,  transport  equations for each of the  variances  could be derived  and  modeled just as the  kinetic  energy 

equation  is  used in M S .  However,  this  would  introduce  undesirable  complexity  to the LES equations. In 

what  follows,  we  will  propose  using  a scale similarity  model  to  obtain  the  variances directly from the  resolved 

field information. 

1. Subgrid probability density functions 

Before  considering  how to model  the  missing  subgrid  information  needed for the droplet transport in LES, it 

is useful  to  briefly  review  what is already  known  about  turbulent  distributions.  Turbulent  velocity  fields  are 

generally  considered  to be well modeled  by the Gaussian  PDF  which is used in the standard E M  (though 

there is recent evidence to the however,  in LES it is the  small subgrid scales which  are  of 

interest.  It is well  known that the small scales of the dissipation range are  highly intermittent as evidenced by 

larger  than  Gaussian,  or exponential, tails  in  the  PDFs of velocity  differences  and  derivative^.[^*] On the  other 

hand,  passive  scalars distributions are highly  dependent  on initial conditions  even at large scales. Scalars are 

generally  modeled by bounded PDFs  such  as the Amplitude  Mapping  closure, Logit-Normal or p frequencies 

which are capable of predicting an entire range of PDF  shapes from initially  segregated species (in  the  case of 

mass  fractions)  to  asymptotically  Gaussian.[39]  Turbulently  advected  scalars are also characterized by  highly 

intermittent  small  scales,[40]  and  even the ‘long  time’  PDFs  of the scalar itself can show substantial deviations 

from Gaussian  behavior.[41]  Only  relatively  few  studies  have  investigated  the form of subgrid PDFs  in  turbulent 

flows  and  these are generally  limited  to the mixture fraction field in the  context of combustion  modeling. 

Madnia  and G i ~ i [ ~ ~ ]  first proposed closing the  subgrid  (constant  rate)  reaction source term by assuming  a p 

PDF for the  subgrid  mixture  fraction  distribution. The ,i? PDF is then  specified  based  on  the  subgrid  mean 

and  variance  which determine the  two  parameters  of the model. Cook and  Riley[43]  proposed calculating the 

subgrid  variance  directly from the resolved  scalar field using  a scale similarity  model. Comparisons with DNS 

generated  scalar fields showed  that  integrated mean product  concentrations  are  reasonably  well  predicted  using 
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this  approach, despite finding that the  actual  subgrid  PDFs are not  well  predicted  by  the 0 form  (see  also 

Refs.[44][45][46]). 

In extending  the  EIM for the  presently  required subgrid modeling we adopt a similar procedure as that 

described  above for scalar fields; i.e. we assume a form for the  subgrid PDF. However,  instead of assuming 

a  form  for  the entire distribution we  will  only consider modeling  the  actual  zero  mean fluctuations. In this 

case,  each  droplet  will  ‘feel’ the effects  from  both  a deterministic filtered  mean gas phase variable  (known 

on the  coarse  mesh)  plus a second  superimposed  contribution  from  the corresponding fluctuation represented 

by a  zero  mean stochastic variable. This latter fluctuation will be assumed to have  a  particular  PDF  that 

remains  to be modeled  which can be obtained  from  knowing  only  the  subgrid variance (for ‘two-parameter’ 

PDFs).  The  distinction is purely  conceptual for distributions such as the Gaussian for which  the  mean  can 

be subtracted  without changing the form  of the PDF. However, if a  particular scalar field is well  represented 

by the 0 PDF, then its zero mean  fluctuation  can  no  longer be assumed  to also be ,B distributed. Note  also 

that.  the  subgrid PDF only refers to  the  theoretical  distribution of the  fluctuations  within each subgrid  volume 

used  in  the filtering ope ra t i~n . [~~] [~ ]  Our  approach therefore contains the implicit assumption that every  point 

which  has the same subgrid  variance for any  given  Eulerian  variable  (at the droplet locations) has  the  same 

theoretical  fluctuation distribution. 

Before  proceeding to analyze the actual  subgrid PDFs, we first examine the globally calculated PDFs of 

the  subgrid  fluctuations. In the following  analyses we will  consider  only the cubic top hat filter due to the 

larger  relative  subgrid contributions available using this kernel function. Several examples of these  PDFs 

calculated  from  simulation TP600 at  time tAUo/b,,o = 85 are presented  in  Fig.11. The curves correspond  to 

the  measured  distributions  of  both  the  streamwise  velocity  and  temperature  Favre fluctuations measured  at  two 

different 2 2  locations;  at the centerline  for  Fig.  1 la and along the  laden  stream turbulent-laminar fluid  boundary 

at x2/bm = -3.5 (in  both cases the  sampling bin has  a  thickness  equal  to f6,/2). The designations  (E) 
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and (L) in the figure captions denote  PDFs  calculated  based on all  Eulerian  grid  points,  and  those  calculated 

at  all  Lagrangian  droplet  locations,  respectively.  Both  the  velocity  and  the temperature are  characterized by 

PDFs  with  significantly  larger  than  Gaussian  tails (the dotted curve is  the  zero  mean,  unity  variance  Gaussian). 

These  results clearly indicate  that  the  small scale fluctuations  display  relatively strong intermittency  effects, 

with  departures from Gaussian PDFs  which are markedly  enhanced  along  the  mixing layer boundary.  Although 

the  PDFs  presented  in this manner do not  directly correspond to  the  subgrid PDFs we  wish to model,  these 

results  nevertheless  show that it cannot simply be assumed that a  subgrid EIM can be based on the same 

Gaussian  statistics that are used  in RANS models. This is further evidenced in Fig.12 which  shows  the cross 

stream  dependent skewness and flatness factors for the three  velocity  components calculated at  the  Eulerian 

grid points from the same TP600 flow  field. The subgrid  fluctuations for all of the components show  strong 

deviations  from  Gaussian behavior (i.e. p3 = 0 and p4 = 3) at all 2 2  locations. Notice that the intermittency 

effects  are  dramatically enhanced near  both  edges  of the mixing  layer  due  to the ‘cross  sampling’ of both 

turbulent  and  laminar  fluid (see e.g.  Fig.4). 

To illustrate the forms of  the  actual  subgrid  PDFs  representing the form of distributions within A? averaging 

volumes, we investigate the subgrid  skewness  and flatness factors. Cook and  Riley[43]  pointed  out  that  the 

subgrid  variance  must be calculated as @@ = - $2 since the subgrid  mean  at the coarse mesh  point 
- 

and 

Favre  filtered  variables are substituted  into  the  above  expressions if 4 is either ui, T or Yv; i.e. 4 --$ 4. Rather 

than  examining  individual subgrid moments  measured  at  particular  locations,  we  look  at planar averages of the 
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moments. These are  presented in Fig.13 for the fully  developed TP600 flow  averaged over both  the  Eulerian 

grid  points  and over moment  values  interpolated  to  the  droplet  locations.  For all variables other than  the  vapor 

mass  fraction, the actual subgrid distributions  are  observed  to  be much closer to Gaussian than  the  planar 

PDFs  in  Figs.11  and  12.  Intermittency  effects  are still found  near  the  edges  of the mixing layer; however, 

Gaussian  statistics appear to be a  reasonable  approximation  over  much of the  layer for these  variables.  Subgrid 

PDFs  are  sampled over relatively  narrow  spatial scales relative to  the  planar ensemble PDFs and  therefore 

sample  more  homogeneous  ensembles,  thereby  resulting in closer to  Gaussian  behavior.  On the other  hand, 

the  vapor  mass  fraction PDFs are characterized by much  larger  deviations  from Gaussian subgrid distributions, 

particularly  near  the edges of the mixing  layer. Of course, the  distributions in Fig.13 may be more  robustly 

modeled  using  an exponential PDF as a more  general form than  Gaussian;  however, this would  introduce  an 

additional  unknown (the exponent) into the model for which no closure is available. 

It  is  interesting  to note that the mass  fraction  PDFs in Fig.13  show  maximal flatness factors on opposite, 

sides of the  mixing layer for the Eulerian  and  droplet  location  interpolations. This occurs because the  droplets 

tend  to  be  found  in  regions  of  maximal  vapor  fraction;[”] therefore the  Eulerian and Lagrangian samplings  can 

produce  substantially different behavior. Figure 13 also suggests that the scalar fluctuation is not  particularly 

well  modeled  by the Gaussian distribution  over  significant  portions of the mixing layer; however,  the  adequacy 

of the Gaussian  should be analyzed through future a posteriori testing.  Note, that the assumed p PDF mentioned 

above  applies  only  to the mixture  fraction,  and not to  the  individual  species  mass fractions being  considered 

in this study. 

2. Subgrid  variance  prediction 

The last  issue  involved in extending the  EIM is the  determination of a  model for the subgrid variances.  Such 

a  model  should  be  relatively  simple so as not  to  add  dramatically  to  the  complexity  of the LES, and  should 

also be applicable to all of the subgrid  variances of interest; i.e. p’p’,  u ~ u ~ ,  TIT’’, P’P’ and Y;Yt. Rather 
“” cv. 
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than  adding  additional  transport  equations for these  terms  into  the LES formulation,  we choose to  model  them 

based  only  on  information available on the  coarse  LES  mesh. A similarity  model for the subgrid stress  tensor 

proposed by Liu e t . ~ l . [ ~ ~ I  is implemented for these  purposes in the  form: 

for  both  non-weighted  and Favre variances.  The  right  hand side of each  equation is calculated from  the 

resolved  field (4 or 7 ) and C, is a  model  constant. The above model is calculated by  applying  a  second 

‘test filter’ to the resolved fields having filter width 2 Af.  No advantage is gained in using a  Favre  test 

filter; therefore,  the filtering at  level & is  non-weighted for all variables. Cook and also used this 

model  to  evaluate  the subgrid scalar mixture  fraction variance in LES of reacting turbulent flows. 

Before  addressing the model constant C,, we first examine the correlation  between the model and  the  actual 

variance  calculated from the DNS database. The correlation coefficient (C) ,  bounded by -1 5 C 5 +1, is 

defined in the standard  manner for any two  variables, @). and 4(2): 

as a  function of x2, where the averaging is again over homogeneous x1 - x3 planes for the mixing  layer. 

Figure  14  shows the coefficient evaluated at time tAUo/&,,o = 85 for simulations TP600 and TP500b. In 

this  case, #(l) = && and q5(2) = $2 - q5 in (27). In calculating the  correlations, it was  necessary  to  reduce 

the  original filter widths from those  used  previously  to A, = 5Ax (125 averaging points), in order  retain  a 

sufficient  spacing  between Af and  the  test filter width q, In Fig.14, we have  used = 11Ax x Sw,o 

and A, = 9Ax x SW,o ( G / A f  = 2.2 and &/Af = 1.8) in analyzing simulations TP600 and TP500b, 

respectively. A high degree of  correlation  is  found  between  the  model  and  the actual subgrid variances  for 

both  simulations  and for all  variables (the ‘drop’ in the curve in Fig.14b  near ~2/6m = -3.6 occurred  because 

the  subgrid  variance fell below a lower  tolerance  level and the  coefficient  was set to zero). These  results 
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are  consistent with additional tests  that  were  performed  using  other  filter  widths  and simulation results  (not 

shown). 

The  model (26) has  been  investigated  previously in the  context of the  subgrid Reynolds stresses by Liu 

er.~L.,[~~] and also for modeling  the  mixture  fraction  variance by Cook  and  Riley[43] and later by Jimenez 

er.aL.[441 Liu er.af. determined that  the optimal model constant is C, = 0.45 f 0.15; however,  when C, is 

calculated  from  an  energy dissipation balance  at  the  test  grid  level,  a  noticeable decreasing dependence on the 

filter width  ratio, q / A f ,  is observed  (though still within  the  cited  range). Cook and  Riley also state that  the 

constant is dependent  on the filter ratio. They use Cm = 0.5 based  on &/A! = 1.8. On the other hand, 

Jimenez er.aZ. calculate the same constant  analytically  based on  an  assumed -5/3 spectral scaling and  arrive 

at C, = 1.69 based  on q / A f  = 2 (and the smallest  possible  LES filter width; A, = 2A2). They attribute 

the lack of agreement  between their results  and  those of Cook  and  Riley on the fact that the Reynolds  number 

of their  DNS  database["] is much  larger.  However,  they do not  mention  the experimentally obtained  model 

constant of Liu e t d .  which is also for moderately  large  Reynolds  numbers;  presumably because the subgrid 

stresses  were  measured as opposed  to  the scalar variance  (though it is  not clear why the distinction  should 

make  a  significant  difference for Schmidt numbers  near  unity; see also  below). As will be shown below,  our 

own  observations are more consistent with the measured  model  constant  values of  Liu er-al. and  Cook  and 

Riley. 

An analysis of the subgrids calculated from the present  simulated  two-phase flows reveals that the optimal 

model  constant is a function of the filter  width  ratio as discussed  above. The constant Cm is found  to be well 

modeled  using: 

This  relatively simple form  was  obtained  from  a  linear fit to both  the TP600 results  with &/A! = 2.2 and 

the  requirement  that Cm = 1 for &/Af = 1 in  order  to  recover  the  Bardina e t . ~ f . [ ~ ~ ]  model. The linear 
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fit leads to Cm = 0.5 for q / A f  = 2.2, and C, = 0.67 for &/A, = 1.8, which are the  two  filter  ratios 

discussed in the  preceding figures. Equation (28) will be shown  below  to  work  well  for all variables of interest 

with the  exception of the gas temperature for which consistent under-predictions of the subgrid variance  were 

observed. This is probably due to  a  combination of latent  heat  effects  and the larger  length  scales of the 

thermal  field due to  the Prandtl number  effects  (though the scalar field Yv does not  show  this  feature  even 

though  the  Lewis  number is unity).  In  order  to  overcome this deficiency  we use Cm + Cm/PrG for the 

temperature  subgrid variance predictions  in  what  follows. 

Planar  averaged predictions of the scale similarity  model are presented  in Fig.15 for all of  the  variables 

needed in LES  of  droplet laden turbulent  flows.  Each  part of the figure contains  both the exact DNS  subgrid 

variance  together  with the similarity  predictions (27) employing the model constant (28). The curves marked 

(E) are averages of subgrid variances  at the Eulerian  grid points, while  those  marked (L) are averages of 

values  interpolated  to the Lagrangian  droplet  locations. The data in  this figure correspond to  simulation 

TP600 measured  at time tAUo/b,,o = 85 and the two filter widths  are A, = 5Ax and &/A, = 2.2 

(Cm = 0.5). Averaging the subgrid variances  over  planes  tends  to  obfuscate some of the scatter that  occurs 

in the  actual  local predictions; nevertheless,  the  results  in  Fig.15  highlight several important attributes of the 

similarity  model. First, the model  yields  good  predictions for the magnitudes of all of the subgrid  variances 

and  at all planar locations within  the  mixing  layer. Second, interpolating the model to the droplet  locations 

yields  equally accurate predictions compared  to  the  Eulerian  variance  predictions;  thus the model is valid for 

predicting  fluctuation  magnitudes felt by the droplets,  a feature for which it has  not  previously  been  tested. 

Notice  also  that  the  model is able to capture  the  variance  behavior  both when the droplets show  lesser  variance 

than  the  Eulerian fields (ui and P), as well as when  the  variances are larger  at droplet locations ( p ,  T and 

Yv). Lastly,  the  model is able to  implicitly  handle  anisotropy of the gas  phase  velocity field since each 

component’s  variance  is calculated from  independent  component  similarity  assumptions;  this attribute would 
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not  be  present if the  subgrid  velocity  variances  were  computed  from  a  transport equation for the  subgrid 

kinetic  energy, as only  the  summation  of  the  three  variances  would  then  be  known, as opposed to their 

individual  magnitudes.  Finally,  Fig.16  shows  two sample model  predictions of the same type as Fig.15,  but 

for simulation TP500b evaluated at  the  same  time,  but  with &/AI = 1.8 (Cm = 0.67). The results  for  these 

and  all  remaining  (not shown) variable  subgrid  variances are equally  accurate as those for simulation TP600. 

It  therefore seems reasonable to  use  the scale similarity  model  to  obtain  the subgrid variances required  to  close 

the EWI extension. 

IV. CONCLUSIONS 

Direct  numerical simulations have  been  conducted  of  a  temporally  developing, droplet laden mixing  layer  at . 

relatively  large  Reynolds numbers and  mass  loading  ratios.  Complete  two-way couplings of  mass,  momentum 

and  energy are included  in the formulation. As many as 18 x lo6 grid  points  were  used to discretize the  Eulerian 

gas phase flow equations, and up to 5.7 x lo6 individual  evaporating droplets were tracked in the Lagrangian 

reference  frame. These large resolutions  could be achieved by utilizing a massively parallel architecture  and 

they  enabled the capture of the complete  transition  to  mixing  turbulence in a multi-phase shear flow.  Three 

dimensional  domain  decomposition was used for the  parallelization of  the gas phase,  and the droplet  equations 

were  solved  by the processors whose  physical  portion of the gas domain  they occupied. This procedure  was 

shown  to scale efficiently for both  single  and  two-phase  simulations  using as many as 64 CPUs. 

The simulated flows were  then  used  to  study  both the physics of mixing  transition of droplet laden  flow, 

and  also to perform  an a priori subgrid  analysis  pertinent  to future large  eddy simulations of  two-phase  flows. 

It  was  found that the mixing  transition is characterized by a  marked  increase  in the rotational energy of the 

flow  which  occurs  between the times of the first primary  spanwise  rollup  and  the completion ol” the first  pairing 

event.  Transition of this type was observed for all  but  the  lowest  Reynolds  number simulations. Increasing 

droplet  mass  loading ratios, at  fixed  Reynolds  number,  were  shown  to produce a more ‘natural’  turbulence 
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with lesser  influences of the  forcing  perturbations  on  the  long  time  flow fields. Furthermore,  the  rotational 

energy of the  final  time flows is also  increased by the droplets due  to both direct vorticity  production  and 

to  additional disturbance wavelengths  introduced by the coupling source  terms.  Finally, the relatively  earlier 

saturation of large  mass  loading  flows (at fixed Reo) results in a  more  organized preferential concentration  of 

droplets  within the mixing  layer due to  the  larger  inertia  of  these  droplets. 

The DNS database was  then  used  to  study the effects of  subgrid  Eulerian gas phase variables as they  affect 

the individual  droplet  transport.  It was shown  that neglecting these  effects can lead to substantial errors in the 

droplet  drag force, the droplet heating  and the evaporation  rates in LES.  This occurs even for Stokes numbers 

St N 1 and  relatively  low gas temperatures;  the obvious conclusion is that  these  subgrid effects must  be 

modeled  in  LES in order to accurately  predict droplet/particle dispersion  and  vaporization.  Therefore,  such  a 

subgrid  model  was  constructed as an  extension of the  eddy  interaction  model  to represent these effects in  LES 

for both  the gas velocity  and  thermodynamic  subgrid fluctuations. In  summary, the subgrid  variance  can be 

found by interpolating  modeled  variances  from the Eulerian  grid  points  to  the  local droplet locations  and  then 

employing  a  random  number  generator to produce  ‘assumed’  Gaussian  distributed fluctuations for all of the 

variables.  Each droplet will  then  interact  with this fluctuation  value for its ‘eddy residence time’  obtained from 

its relative  duration  spent  within the subgrid filter width, A,/lvil. The assumption  of Gaussian subgrid  PDFs 

was  tested  with the DNS database and  found to be  adequate  throughout  most of the mixing  layer,  despite the 

fact  that  the ensemble of subgrid  fluctuations are highly  intermittent. The exception to this observation  is  the 

vapor  mass  fraction  subgrid  PDF,  which  shows substantial deviations  from  Gaussian  behavior  near  the  edges 

of the  layer.  Finally, the scale similarity  model of  Liu e t . ~ l . [ ~ ~ ]  was  extended  to  predict  the  subgrid  variances 

of all  necessary  variables.  When  based  on  a filter width  dependent  model constant, the  similarity  model  was 

shown  to  be  reasonably accurate in capturing the variance  behavior  at  both  the  Eulerian grid points  and  at  the 

droplet  locations  based  on  interpolations. 
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TABLES 

I ProPertv I Value ~~- r-", ~ ~~ 

W, 
142.0 kg(kg.  mole)-' Wv 
28.97 kg(lcg.  mole)-' . 

C m  f !  1004.8 J.ka-'K-' 
1939.6 J.kg-'K-l 

0.697 
642 kg m- 

447.7 K 
5.35 X io5 J . K - ~  

Table 1: Property  values  used  in  the  simulations.  The  subscripts C and V denote the 
carrier gas and  evaporated  vapor,  respectively. 

Run <Td,,>/At Ax /<Do> n* M L  N o  N1 x N2 x N3 Reo 
SP200 - - - 0 100 x 112 x 60 200 - 

Table  2:  Simulation  parameters  (SP = single  phase, TP = two-phase)  including the 
Reynolds  number, grid resolution,  number of droplets, mass loading  ratio,  number  density (n* 
is the number of droplets per unit 6:,o volume),  and  relative  droplet  length  and time scales: 
All runs  are  initialized  with M, = 0.35, T = 375K and p = la tm.  TP runs are  initialized 
with wi = ui, Td = 345K and  polydisperse  Gaussian 7 d  distributions  such that <Sto> = 3 

and StO,mms = 0.5. 
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I Run I Memory [GB] I t ,  [SI 

Table 3: The total memory  requirement in gigabytes, average  clock time per iteration (tc) 
running on 64 CPUs (* indicates  times on 8 CPUs) and  the  total  number  of iterations (Nits) 

for each  simulation. 

Calculation 
40% Interpolation 

Simulation  Time 

1 

Source  Term  Calculation 
12% Source Term Smoothine 
12% 

t v ,  

Droplet  Transfer 
. .  

I 36% 

Table 4: The approximate relative  time spent on  the  various  droplet operations for the 
two-phase flow simulation TP200 ( 6 4  CPUs). 
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FIGURE CAPTIONS 

Figure 1: Schematic of the temporally  developing,  droplet  laden  mixing  layer. 

Figure 2: Temporal  development of the  momentum  thickness  normalized by the initial vorticity  thickness  as  a 

function of the (a) initial Reynolds  number  at  fixed M L  = 0.2, and  (b) mass loading ratio at fixed Reo = 500. 

Figure 3: Temporal  development of normalized quantities integrated over the domain. (a) vorticity  magnitude 

for M L  = 0.2, (b) vorticity  magnitude for Reo = 500, (c) relative  positive spanwise vorticity for M L  = 0.2, 

and  (d)  relative positive spanwise vorticity for Reo = 500. 

Figure 4: Instantaneous contours at  time tAUo/S,,o = 85 from  simulation TP600 (Reo = 600, M L  = 0.2; 

Re, = 1400) in  a rib plane (z3 = 3X3/4). (a) Spanwise vorticity w3 (dashed lines for negative values), (b) 

vapor  mass fraction Yv, (c) droplet concentration,  and (d) blow up of the  boxed  region in part (a) also  showing 

w3 contours. 

Figure 5: Instantaneous contours at  time tAUo/S,,o = 85 from  simulation TP500b (Reo = 500, M L  = 0.5; 

Re, = 1213) in  a rib plane (z3 = 3X3/4). (a) Spanwise vorticity w3 (dashed lines for negative values), (b) 

vapor mass fraction Yv, and (c)  droplet  concentration. 

Figure 6: Instantaneous contours of the droplet  concentration at time tAUo/S,,o = 85 from simulation 

TP500a (Reo = 500, M L  = 0.2; R e ,  = 1179) in a rib plane (x3 = 3X3/4). 

Figure 7: Droplet Stokes number (St = .rdAUo/S,,o) planar  averaged  statistics for various  simulations  at  time 

tAUo/S,,o = 85. (a) mean, (b) root  mean  square fluctuation, (c) skewness  factor,  and (d) flatness factor. 

Figure 8: Planar averaged  statistics for various  simulations  at  time tAUo/S,,o = 85 calculated based  on  both 

unfiltered  and  filtered gas phase  fields. (a) fluctuation  kinetic  energy,  (b)  fluctuation  enstrophy, (c)  temperature 

fluctuation  variance,  and (d) vapor  mass  fraction  fluctuation  variance. 
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Figure 9: Planar  averaged  statistics  at  droplet  locations for various  simulations  at  time tAUo/&,,o = 85 

calculated  based on  both  unfiltered  and  filtered  gas  phase fields. (a) Droplet  drag force for simulation TP600, 

(b) droplet drag force for simulation TP500b. (c) droplet  Reynolds  number for simulation TP600, and  (d) 

droplet  Reynolds  number for simulation TP500b. Note  that rno is  a  reference  value corresponding to the mass 

of a  droplet  with St =< St >o= 3. 

Figure 10: Planar averaged statistics  at  droplet locations for simulation TP600 at time tAUo/6,,0 = 85 

calculated  based  on  both  unfiltered  and  filtered  gas  phase fields. (a) droplet  heat flux, and (b) droplet  non- 

dimensional  evaporation  parameter. 

Figure 11: Normalized PDFs of Favre subgrid  fluctuations  calculated for x1 - x3 planes from simulation 

TP600 at time tAUo/6,,0 = 85 with A, = 6,,0. (a) x2 = 0 f &/2,  and (b) x2 = -3.56, f 6m/2 .  

Figure 12: Moments of velocity  subgrid Favre fluctuations  calculated  at  Eulerian  grid points from  simulation 

TP600 at time tAUo/6,,o = 85 using Ap = l lAx  x 6,,0. 

Figure 13: Planar averaged  moments of subgrid  PDFs  calculated  at  time tAUo/&,,o = 85 from  simulation 

TP600 using Af  = l l A x  x SW,o. (a)  skewness factor at Eulerian  grid  points, (b) skewness factor at  droplet 

locations, (c) flatness factor at  Eulerian  grid  points,  and (d) flatness factor  at droplet locations. 

Figure 14: Correlation coefficient for the exact  and  modeled  subgrid  variance calculated within x1 - x3 

planes  at time tAUo/6,,0 = 85. (a)  simulation TP600 with Af = 5 A x  and &/At = 2.2, and  (b)  simulation 

TP500b with Af = 5 A x  and &/Af = 1.8. 

Figure 15: Comparison of planar averaged  exact  and  modeled  subgrid  variances calculated at  both  Eulerian 

grid  points  and droplet locations for simulation TP600 at  time tAUo/&,,o = 85 with Af  = 5 A x  x 6,,0/2 

and A f / A f  = 2.2. (a)  streamwise  velocity, (b) cross stream velocity, (c) spanwise  velocity, (d) density,  (e) 
- 

temperature, (f) pressure, (g) vapor  mass  fraction. 

Figure 16: Comparison  of planar averaged  exact  and  modeled  subgrid  variances calculated at  both  Eulerian 
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grid  points  and  droplet  locations  for  simulation TP500b at  time tAUo/6,,0 = 85 with A, = 5Ax x 6,,0/2 

and &/A! = 1.8. (a)  streamwise  velocity, (b) temperature. 
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